3.3.81 \(\int (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2} \, dx\) [281]

3.3.81.1 Optimal result
3.3.81.2 Mathematica [C] (verified)
3.3.81.3 Rubi [A] (verified)
3.3.81.4 Maple [A] (verified)
3.3.81.5 Fricas [C] (verification not implemented)
3.3.81.6 Sympy [F(-1)]
3.3.81.7 Maxima [F]
3.3.81.8 Giac [F]
3.3.81.9 Mupad [F(-1)]

3.3.81.1 Optimal result

Integrand size = 27, antiderivative size = 278 \[ \int (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2} \, dx=-\frac {7 a^2 (e \cos (c+d x))^{5/2}}{12 d e \sqrt {a+a \sin (c+d x)}}+\frac {7 a e \sqrt {e \cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{8 d}-\frac {a (e \cos (c+d x))^{5/2} \sqrt {a+a \sin (c+d x)}}{3 d e}-\frac {7 a e^{3/2} \text {arcsinh}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{8 d (1+\cos (c+d x)+\sin (c+d x))}+\frac {7 a e^{3/2} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{8 d (1+\cos (c+d x)+\sin (c+d x))} \]

output
-7/12*a^2*(e*cos(d*x+c))^(5/2)/d/e/(a+a*sin(d*x+c))^(1/2)-1/3*a*(e*cos(d*x 
+c))^(5/2)*(a+a*sin(d*x+c))^(1/2)/d/e+7/8*a*e*(e*cos(d*x+c))^(1/2)*(a+a*si 
n(d*x+c))^(1/2)/d-7/8*a*e^(3/2)*arcsinh((e*cos(d*x+c))^(1/2)/e^(1/2))*(1+c 
os(d*x+c))^(1/2)*(a+a*sin(d*x+c))^(1/2)/d/(1+cos(d*x+c)+sin(d*x+c))+7/8*a* 
e^(3/2)*arctan(sin(d*x+c)*e^(1/2)/(e*cos(d*x+c))^(1/2)/(1+cos(d*x+c))^(1/2 
))*(1+cos(d*x+c))^(1/2)*(a+a*sin(d*x+c))^(1/2)/d/(1+cos(d*x+c)+sin(d*x+c))
 
3.3.81.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.09 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.28 \[ \int (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2} \, dx=-\frac {8\ 2^{3/4} a (e \cos (c+d x))^{5/2} \operatorname {Hypergeometric2F1}\left (-\frac {7}{4},\frac {5}{4},\frac {9}{4},\frac {1}{2} (1-\sin (c+d x))\right ) \sqrt {a (1+\sin (c+d x))}}{5 d e (1+\sin (c+d x))^{7/4}} \]

input
Integrate[(e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x])^(3/2),x]
 
output
(-8*2^(3/4)*a*(e*Cos[c + d*x])^(5/2)*Hypergeometric2F1[-7/4, 5/4, 9/4, (1 
- Sin[c + d*x])/2]*Sqrt[a*(1 + Sin[c + d*x])])/(5*d*e*(1 + Sin[c + d*x])^( 
7/4))
 
3.3.81.3 Rubi [A] (verified)

Time = 1.17 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.05, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.556, Rules used = {3042, 3157, 3042, 3157, 3042, 3164, 3042, 3156, 3042, 25, 3254, 216, 3312, 63, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sin (c+d x)+a)^{3/2} (e \cos (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a \sin (c+d x)+a)^{3/2} (e \cos (c+d x))^{3/2}dx\)

\(\Big \downarrow \) 3157

\(\displaystyle \frac {7}{6} a \int (e \cos (c+d x))^{3/2} \sqrt {\sin (c+d x) a+a}dx-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7}{6} a \int (e \cos (c+d x))^{3/2} \sqrt {\sin (c+d x) a+a}dx-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 3157

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \int \frac {(e \cos (c+d x))^{3/2}}{\sqrt {\sin (c+d x) a+a}}dx-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \int \frac {(e \cos (c+d x))^{3/2}}{\sqrt {\sin (c+d x) a+a}}dx-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 3164

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \left (\frac {e^2 \int \frac {\sqrt {\sin (c+d x) a+a}}{\sqrt {e \cos (c+d x)}}dx}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \left (\frac {e^2 \int \frac {\sqrt {\sin (c+d x) a+a}}{\sqrt {e \cos (c+d x)}}dx}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 3156

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \left (\frac {e^2 \left (\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\cos (c+d x)+1}}{\sqrt {e \cos (c+d x)}}dx}{\sin (c+d x)+\cos (c+d x)+1}+\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}dx}{\sin (c+d x)+\cos (c+d x)+1}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \left (\frac {e^2 \left (\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int -\frac {\cos \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}dx}{\sin (c+d x)+\cos (c+d x)+1}+\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sin (c+d x)+\cos (c+d x)+1}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \left (\frac {e^2 \left (\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sin (c+d x)+\cos (c+d x)+1}-\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{\sin (c+d x)+\cos (c+d x)+1}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 3254

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \left (\frac {e^2 \left (-\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{\sin (c+d x)+\cos (c+d x)+1}-\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x)}{\cos (c+d x)+1}+1}d\left (-\frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}\right )}{d (\sin (c+d x)+\cos (c+d x)+1)}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \left (\frac {e^2 \left (\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}-\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{\sin (c+d x)+\cos (c+d x)+1}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 3312

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \left (\frac {e^2 \left (\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}-\frac {\sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}d\cos (c+d x)}{d (\sin (c+d x)+\cos (c+d x)+1)}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 63

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \left (\frac {e^2 \left (\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}-\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\sqrt {\cos (c+d x)+1}}d\sqrt {e \cos (c+d x)}}{d e (\sin (c+d x)+\cos (c+d x)+1)}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {7}{6} a \left (\frac {3}{4} a \left (\frac {e^2 \left (\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}-\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \text {arcsinh}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e} (\sin (c+d x)+\cos (c+d x)+1)}\right )}{2 a}+\frac {e \sqrt {a \sin (c+d x)+a} \sqrt {e \cos (c+d x)}}{a d}\right )-\frac {a (e \cos (c+d x))^{5/2}}{2 d e \sqrt {a \sin (c+d x)+a}}\right )-\frac {a \sqrt {a \sin (c+d x)+a} (e \cos (c+d x))^{5/2}}{3 d e}\)

input
Int[(e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x])^(3/2),x]
 
output
-1/3*(a*(e*Cos[c + d*x])^(5/2)*Sqrt[a + a*Sin[c + d*x]])/(d*e) + (7*a*(-1/ 
2*(a*(e*Cos[c + d*x])^(5/2))/(d*e*Sqrt[a + a*Sin[c + d*x]]) + (3*a*((e*Sqr 
t[e*Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]])/(a*d) + (e^2*((-2*ArcSinh[Sqrt 
[e*Cos[c + d*x]]/Sqrt[e]]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]]) 
/(d*Sqrt[e]*(1 + Cos[c + d*x] + Sin[c + d*x])) + (2*ArcTan[(Sqrt[e]*Sin[c 
+ d*x])/(Sqrt[e*Cos[c + d*x]]*Sqrt[1 + Cos[c + d*x]])]*Sqrt[1 + Cos[c + d* 
x]]*Sqrt[a + a*Sin[c + d*x]])/(d*Sqrt[e]*(1 + Cos[c + d*x] + Sin[c + d*x]) 
)))/(2*a)))/4))/6
 

3.3.81.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 63
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2/b   S 
ubst[Int[1/Sqrt[c + d*(x^2/b)], x], x, Sqrt[b*x]], x] /; FreeQ[{b, c, d}, x 
] && GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3156
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[cos[(e_.) + (f_.)*(x_)] 
*(g_.)], x_Symbol] :> Simp[a*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x 
]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x]))   Int[Sqrt[1 + Cos[e + f*x]]/Sqrt 
[g*Cos[e + f*x]], x], x] + Simp[b*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e 
+ f*x]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x]))   Int[Sin[e + f*x]/(Sqrt[g*C 
os[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, g}, x] & 
& EqQ[a^2 - b^2, 0]
 

rule 3157
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + 
f*x])^(m - 1)/(f*g*(m + p))), x] + Simp[a*((2*m + p - 1)/(m + p))   Int[(g* 
Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, 
g, m, p}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + p, 0] && Integers 
Q[2*m, 2*p]
 

rule 3164
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(3/2)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)]], x_Symbol] :> Simp[g*Sqrt[g*Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x 
]]/(b*f)), x] + Simp[g^2/(2*a)   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[g*Cos[e 
+ f*x]], x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
 

rule 3254
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b + d*x^2), x], 
x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))], x 
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] 
 && NeQ[c^2 - d^2, 0]
 

rule 3312
Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*(( 
c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b*f)   Su 
bst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, 
b, c, d, e, f, m, n}, x]
 
3.3.81.4 Maple [A] (verified)

Time = 6.57 (sec) , antiderivative size = 332, normalized size of antiderivative = 1.19

method result size
default \(-\frac {\sqrt {e \cos \left (d x +c \right )}\, \sqrt {a \left (1+\sin \left (d x +c \right )\right )}\, e a \left (8 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+8 \left (\cos ^{3}\left (d x +c \right )\right )-14 \cos \left (d x +c \right ) \sin \left (d x +c \right )+22 \left (\cos ^{2}\left (d x +c \right )\right )-21 \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )-21 \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )-21 \sin \left (d x +c \right )-7 \cos \left (d x +c \right )-21 \sec \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )-21 \sec \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )-21\right )}{24 d \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right )}\) \(332\)

input
int((e*cos(d*x+c))^(3/2)*(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/24/d*(e*cos(d*x+c))^(1/2)*(a*(1+sin(d*x+c)))^(1/2)*e*a/(1+cos(d*x+c)+si 
n(d*x+c))*(8*cos(d*x+c)^2*sin(d*x+c)+8*cos(d*x+c)^3-14*cos(d*x+c)*sin(d*x+ 
c)+22*cos(d*x+c)^2-21*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan((-cos(d*x+ 
c)/(1+cos(d*x+c)))^(1/2))-21*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh(si 
n(d*x+c)/(1+cos(d*x+c))/(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-21*sin(d*x+c)- 
7*cos(d*x+c)-21*sec(d*x+c)*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan((-cos 
(d*x+c)/(1+cos(d*x+c)))^(1/2))-21*sec(d*x+c)*(-cos(d*x+c)/(1+cos(d*x+c)))^ 
(1/2)*arctanh(sin(d*x+c)/(1+cos(d*x+c))/(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2) 
)-21)
 
3.3.81.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.48 (sec) , antiderivative size = 981, normalized size of antiderivative = 3.53 \[ \int (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2} \, dx=\text {Too large to display} \]

input
integrate((e*cos(d*x+c))^(3/2)*(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas 
")
 
output
-1/96*(21*I*(-a^6*e^6/d^4)^(1/4)*d*log(-343/2*(2*(a^4*e^4*sin(d*x + c) + s 
qrt(-a^6*e^6/d^4)*(a*d^2*e*cos(d*x + c) + a*d^2*e))*sqrt(e*cos(d*x + c))*s 
qrt(a*sin(d*x + c) + a) + (-a^6*e^6/d^4)^(3/4)*(I*d^3*cos(d*x + c) + I*d^3 
 + (2*I*d^3*cos(d*x + c) + I*d^3)*sin(d*x + c)) + (-2*I*a^3*d*e^3*cos(d*x 
+ c)^2 - I*a^3*d*e^3*cos(d*x + c) + I*a^3*d*e^3*sin(d*x + c) + I*a^3*d*e^3 
)*(-a^6*e^6/d^4)^(1/4))/(cos(d*x + c) + sin(d*x + c) + 1)) - 21*I*(-a^6*e^ 
6/d^4)^(1/4)*d*log(-343/2*(2*(a^4*e^4*sin(d*x + c) + sqrt(-a^6*e^6/d^4)*(a 
*d^2*e*cos(d*x + c) + a*d^2*e))*sqrt(e*cos(d*x + c))*sqrt(a*sin(d*x + c) + 
 a) + (-a^6*e^6/d^4)^(3/4)*(-I*d^3*cos(d*x + c) - I*d^3 + (-2*I*d^3*cos(d* 
x + c) - I*d^3)*sin(d*x + c)) + (2*I*a^3*d*e^3*cos(d*x + c)^2 + I*a^3*d*e^ 
3*cos(d*x + c) - I*a^3*d*e^3*sin(d*x + c) - I*a^3*d*e^3)*(-a^6*e^6/d^4)^(1 
/4))/(cos(d*x + c) + sin(d*x + c) + 1)) - 21*(-a^6*e^6/d^4)^(1/4)*d*log(-3 
43/2*(2*(a^4*e^4*sin(d*x + c) - sqrt(-a^6*e^6/d^4)*(a*d^2*e*cos(d*x + c) + 
 a*d^2*e))*sqrt(e*cos(d*x + c))*sqrt(a*sin(d*x + c) + a) + (-a^6*e^6/d^4)^ 
(3/4)*(d^3*cos(d*x + c) + d^3 + (2*d^3*cos(d*x + c) + d^3)*sin(d*x + c)) + 
 (2*a^3*d*e^3*cos(d*x + c)^2 + a^3*d*e^3*cos(d*x + c) - a^3*d*e^3*sin(d*x 
+ c) - a^3*d*e^3)*(-a^6*e^6/d^4)^(1/4))/(cos(d*x + c) + sin(d*x + c) + 1)) 
 + 21*(-a^6*e^6/d^4)^(1/4)*d*log(-343/2*(2*(a^4*e^4*sin(d*x + c) - sqrt(-a 
^6*e^6/d^4)*(a*d^2*e*cos(d*x + c) + a*d^2*e))*sqrt(e*cos(d*x + c))*sqrt(a* 
sin(d*x + c) + a) - (-a^6*e^6/d^4)^(3/4)*(d^3*cos(d*x + c) + d^3 + (2*d...
 
3.3.81.6 Sympy [F(-1)]

Timed out. \[ \int (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2} \, dx=\text {Timed out} \]

input
integrate((e*cos(d*x+c))**(3/2)*(a+a*sin(d*x+c))**(3/2),x)
 
output
Timed out
 
3.3.81.7 Maxima [F]

\[ \int (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2} \, dx=\int { \left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((e*cos(d*x+c))^(3/2)*(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima 
")
 
output
integrate((e*cos(d*x + c))^(3/2)*(a*sin(d*x + c) + a)^(3/2), x)
 
3.3.81.8 Giac [F]

\[ \int (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2} \, dx=\int { \left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((e*cos(d*x+c))^(3/2)*(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate((e*cos(d*x + c))^(3/2)*(a*sin(d*x + c) + a)^(3/2), x)
 
3.3.81.9 Mupad [F(-1)]

Timed out. \[ \int (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^{3/2} \, dx=\int {\left (e\,\cos \left (c+d\,x\right )\right )}^{3/2}\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2} \,d x \]

input
int((e*cos(c + d*x))^(3/2)*(a + a*sin(c + d*x))^(3/2),x)
 
output
int((e*cos(c + d*x))^(3/2)*(a + a*sin(c + d*x))^(3/2), x)